CIRCUITOS COMBINACIONAIS - MAPA DE KARNAUGH

Fundação Universidade Federal de Rondônia Núcleo de Ciência e Tecnologia Departamento de Engenharia Elétrica - DEE Disciplina de Sistemas Digitais

I. OBJETIVOS

O mapa de Karnaugh é apresentado como uma ferramenta muito útil para simplificação de funções booleanas de até 5 variáveis. Um circuito de decisão de maioria, em que a saída é 1 se, e somente se, a maioria das entradas for 1 é apresentado como exemplo de aplicação.

II. INTRODUÇÃO TEÓRICA

A. Generalidades

O mapa de Karnaugh é uma forma ordenada para simplificar uma expressão booleana, a qual geralmente nos leva a um circuito com configuração mínima. Pode ser facilmente aplicado em funções envolvendo duas a cinco variáveis. Para seis ou mais variáveis, o método começa a se tornar incômodo, e podemos usar outras técnicas mais elaboradas. Também pode ser usado para determinar se portas duais ou complementares tornarão o circuito mais simples.

B. Mintermos e mapas de 2 a 5 variáveis

Qualquer função booleana pode ser escrita na forma canônica disjuntiva ou conjuntiva. A forma canônica disjuntiva é também conhecida como soma de produtos, e é escrita como soma de termos que apresentam sempre todas as variáveis envolvidas. Exemplo: Escrever no forma canônica disjuntiva a função:

$$f(A, B, C) = A(C + \overline{B}) \tag{1}$$

$$f(A, B, C) = A \cdot C + A \cdot \overline{B} \tag{2}$$

$$f(A, B, C) = A \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot \overline{B} \cdot \overline{C} \tag{3}$$

Cada termo é conhecido como produto padrão, produto canônico ou mintermo.

O mapa de Karnaugh é uma forma de representar uma dada função de maneira que cada mintermo mantenha-se vizinho de todos aqueles dos quais difere apenas por uma variável. Assim, os mapas de Karnaugh de 2 a 5 variáveis são indicados nas figuras 1, 2, 3 e 4.

O mapa de Karnaugh de duas variáveis dado pela tabela verdade 1, a seguir, é formado por quatro células $(2^2 = 4)$ dispostas como mostra a figura.

Tabela I Tabela Verdade de 2 entradas

ENT	RAD	SAÍDA	
n^o	A	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	0

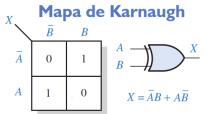


Figura 1. Mapa de Karnaugh de 2 Entradas, e a tabela verdade.

A partir dessa tabela, podemos verificar os seguintes passos para se obter o mapa de Karnaugh e por consequência a simplificação de uma expressão booleana.

- 1º Passo: Obter a tabela verdade do circuito que se quer otimizar;
- 2º Passo: Desenhar as células (retângulos) com todas as combinações possíveis, respeitando a regra de 2ⁿ, sendo n o número de entradas;
- 3º Passo: Numerar as células conforme as saídas da tabela verdade;
- 4º Passo: Verificar a regra da adjacência, sendo que de uma linha para outra, só poderá haver a variação de uma entrada, e de uma coluna para outra (coluna seguinte) também só poderá haver a variação de uma entrada;
- 5º Passo: Preencher as células conforme as respectivas saídas e fazer o enlace, no enlace verificar as entradas que não se alteram, afim de se obter a operação booleana simplificada.

C. Exemplo 1: Mapa de Karnaugh com 3 entradas

Vamos fazer um exemplo utilizando o mapa de Karnaugh com 3 entradas. O objetivo é simplificar e expressão booleana para a seguinte tabela verdade.

1º Passo: Montar a Tabela Verdade

Nessa parte primeiro devemos montar a tabela, verificando o numero de entradas bem como as saídas correspondentes para cada entrada.

Tabela II Tabela Verdade de 3 entradas

	NTRA	SAÍDA		
n^o	A	В	C	S
0	0	0	0	1
1	0	0	1	1
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	1
7	1	1	1	1

Agora fazendo os passos de 2 a 5, teremos o resultado esperado conforme a figura a baixo

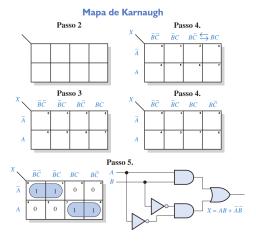


Figura 2. Passos 2, 3, 4 e 5.

D. Exemplo 2: Mapa de Karnaugh com 4 entradas

Agora iremos fazer um exemplo utilizando o mapa de Karnaugh com 4 entradas. O objetivo é simplificar e expressão booleana para a seguinte tabela verdade.

Tabela III Tabela Verdade de 4 entradas

	SAÍDA				
n^o	A	В	С	D	S
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

Agora fazendo os passos de 2 a 5, teremos o resultado esperado conforme a figura a baixo

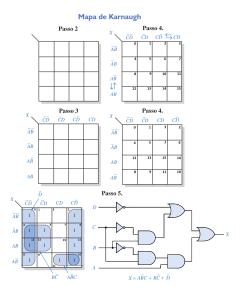


Figura 3. Passos 2, 3, 4 e 5.

E. Exemplo 3: Mapa de Karnaugh com 5 entradas

Agora iremos fazer um exemplo utilizando o mapa de Karnaugh com 5 entradas. O objetivo é simplificar e expressão booleana para a seguinte tabela verdade.

Tabela IV Tabela Verdade de 5 entradas

	ENTRADAS					
n^o	A	В	C	D	Е	S
0	0	0	0	0	0	1
1	0	0	0	0	1	0
2	0	0	0	1	0	1
3	0	0	0	1	1	0
4	0	0	1	0	0	1
5	0	0	1	0	1	1
6	0	0	1	1	0	0
7	0	0	1	1	1	1
8	0	1	0	0	0	1
9	0	1	0	0	1	0
10	0	1	0	1	0	1
11	0	1	0	1	1	0
12	0	1	1	0	0	1
13	0	1	1	0	1	1
14	0	1	1	1	0	0
15	0	1	1	1	1	1
16	1	0	0	0	0	0
17	1	0	0	0	1	0
18	1	0	0	1	0	0
19	1	0	0	1	1	0
20	1	0	1	0	0	0
21	1	0	1	0	1	1
22	1	0	1	1	0	0
23	1	0	1	1	1	1
24	1	1	0	0	0	0
25	1	1	0	0	1	0
26	1	1	0	1	0	0
27	1	1	0	1	1	0
28	1	1	1	0	0	0
29	1	1	1	0	1	1
30	1	1	1	1	0	0
31	1	1	1	1	1	1

Agora fazendo os passos de 2 a 5, teremos o resultado esperado conforme a figura a baixo

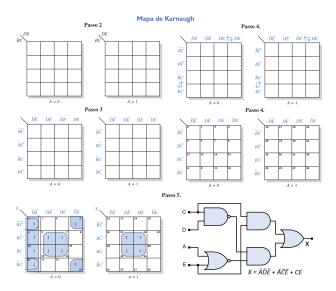


Figura 4. Passos 2, 3, 4 e 5.

III. MATERIAIS UTILIZADOS

- 01 Gerador de Tensão DC Instrutherm FA 3030;
- 01 Multímetro Digital ICEL MD 6601;
- 03 Resistor de 220 Ω ;
- 04 Resistor de 510 Ω ;
- 01 CI 74LS04 Porta Lógica INVERSORA;
- 01 CI 74LS08 Porta Lógica E;
- 01 CI 74LS32 Porta Lógica OU;
- 01 CI 74LS86 Porta Lógica OU-EXCLUSIVO;
- 01 Protoboard;
- 04 Botões Táctil.

IV. PARTE EXPERIMENTAL

A. Primeira Parte: Mapa K de 3 Variáveis

Faça o Mapa de Karnaugh e monte um circuito lógico representado pela tabela verdade de três variáveis, como mostrado a seguir, somente com portas E e INVERSORA (AND e NOT).

Tabela V Tabela Verdade de 3 entradas

EN'	ΓRΑΙ	SAÍDA	
Α	В	C	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Note que é possível montar esse circuito usando somente 2 CIs. Uma solução possível para implementa-lo é usando o CI 74LS08.

B. Segunda Parte: Mapa K de 4 Variáveis

Faça o Mapa de Karnaugh e monte um circuito lógico representado pela tabela verdade de quatro variáveis, como

mostrado a seguir, somente com portas E e INVERSORA (AND e NOT).

Tabela VI Tabela Verdade de 4 entradas

E	ENTR	SAÍDA		
Α	В	С	D	S
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

Note que é possível montar esse circuito usando somente três CIs. Uma solução possível para implementa-lo é usando os CIs 74LS08 e 74LS04. Verifique seu funcionamento e veja se está de acordo com a tabela verdade dada.

C. Terceira Parte: Mapa K de 5 Variáveis

Tabela VII
TABELA VERDADE DE 5 ENTRADAS

	EN	SAÍDA			
Α	В	С	D	Е	X
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	0
0	0	1	0	0	1
0	0	1	0	1	1
0	0	1	1	0	1
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	1
0	1	0	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	0	1	1
0	1	1	1	0	0
0	1	1	1	1	0
1	0	0	0	0	1
1	0	0	0	1	1
1	0	0	1	0	1
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	0	1	0
1	0	1	1	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	0
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	0
1	1	1	1	0	1
1	1	1	1	1	0

Faça o Mapa de Karnaugh e monte um circuito lógico representado pela tabela verdade de cinco variáveis, como mostrado a cima, somente com portas E e INVERSORA (AND e NOT).

Note que é possível montar esse circuito usando somente três CIs. Uma solução possível para implementa-lo é usando os CIs 74LS08 e 74LS04. Verifique seu funcionamento e veja se está de acordo com a tabela verdade dada.

REFERÊNCIAS

- SEDRA, Adel S. SMITH, Kenneth C. "Microeletrônica", 5 edição. São Paulo: Pearson Prentice Hall, 2007.
- [2] MALVINO, Albert P. "Eletrônica", Volume 1, 4^a ed. São Paulo: Makron Books, 1995.
- [3] TOCCI, R.J., WIDMER, N. S., MOSS, G.I. Sistemas Digitais Princípios e Aplicações. Prentice Hall, 10^a Edição, 2007.
- [4] IDOETA, I.V.; CAPUANO, F.G. Elementos de Eletrônica Digital, 5ª edição. Érica Ltda. 2003
- [5] DE LOURENÇO, A. C. et. al. Circuitos Digitais, 5^a edição. Érica Ltda. 2004
- [6] FLOYD, T. Digital Fundamentals. A System Approach. Pearson. 2013.
- [7] FLOYD, T. Digital Fundamentals. 10th Edition, Pearson Prentice Hall. 2009.
- [8] LAB. DE ENGENHARIA ELÉTRICA-UNIR. Laboratório de Sistemas Digitais e Microprocessados: site: http://www.labs.eletrica.unir.br/pagina/exibir/646